If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2-47n-72=0
a = 7; b = -47; c = -72;
Δ = b2-4ac
Δ = -472-4·7·(-72)
Δ = 4225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4225}=65$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-47)-65}{2*7}=\frac{-18}{14} =-1+2/7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-47)+65}{2*7}=\frac{112}{14} =8 $
| 5x+8-2x=35 | | 16=g/2+13 | | (x+213 )(x−213 )=0 | | 36+6u=12u | | z-1/3=21/6 | | 88+x=186 | | 8x+3(x-7)=6(1+x) | | -14=y/7-5 | | -2x^2-24=0 | | 2x+3+5x=8x-4 | | 4f+8=4f-12 | | 18y-5y=3y-6 | | 2/3w+4=-8 | | 83+x=175 | | r^2+8+15=0 | | 16=2x+2;7 | | 180-(180-2x-x)=0 | | d/3-9=11 | | 3=k/4-1 | | 9x-2=277 | | 85+x=181 | | 7-3(x-10)=67 | | -y-y+7=-1 | | 3r+2=-5 | | 41+x=377 | | 42+x=441 | | 38x+31=449 | | x/5-17=-16 | | 2d+4d–2=–14 | | 16=z/3=12 | | (8/x-5)=(7/x-4) | | 4x-5=40+x |